Odorant concentration differentiator for intermittent olfactory signals.
نویسندگان
چکیده
Animals need to discriminate differences in spatiotemporally distributed sensory signals in terms of quality as well as quantity for generating adaptive behavior. Olfactory signals characterized by odor identity and concentration are intermittently distributed in the environment. From these intervals of stimulation, animals process odorant concentration to localize partners or food sources. Although concentration-response characteristics in olfactory neurons have traditionally been investigated using single stimulus pulses, their behavior under intermittent stimulus regimens remains largely elusive. Using the silkmoth (Bombyx mori) pheromone processing system, a simple and behaviorally well-defined model for olfaction, we investigated the neuronal representation of odorant concentration upon intermittent stimulation in the naturally occurring range. To the first stimulus in a series, the responses of antennal lobe (AL) projection neurons (PNs) showed a concentration dependence as previously shown in many olfactory systems. However, PN response amplitudes dynamically changed upon exposure to intermittent stimuli of the same odorant concentration and settled to a constant, largely concentration-independent level. As a result, PN responses emphasized odorant concentration changes rather than encoding absolute concentration in pulse trains of stimuli. Olfactory receptor neurons did not contribute to this response transformation which was due to long-lasting inhibition affecting PNs in the AL. Simulations confirmed that inhibition also provides advantages when stimuli have naturalistic properties. The primary olfactory center thus functions as an odorant concentration differentiator to efficiently detect concentration changes, thereby improving odorant source orientation over a wide concentration range.
منابع مشابه
Correspondence between odorant-evoked patterns of receptor neuron input and intrinsic optical signals in the mouse olfactory bulb.
We compared odorant-evoked patterns of receptor neuron input to the mouse olfactory bulb, imaged with a calcium-sensitive dye, with those of intrinsic optical signals imaged from the same preparations. Both methods yielded patterns of glomerular activity that showed a strong concentration dependence, a loosely organized chemotopy, and involved widely distributed glomeruli. Presynaptic calcium a...
متن کاملToward an Estimate of the Number of Receptor Neuron Spikes Needed for Odor Identification
We measured the concentration dependence of the ability of rats to identify odorants and compared these results with the calcium signals in the nerve terminals of the olfactory receptor neurons. Odorant identification remained far above random chance at all concentrations tested (between 0.0006% and 35% of saturated vapor). In contrast the calcium signals were much smaller than their maximum va...
متن کاملRecent concepts about sense of smell, odorant receptors and physiology of olfaction- an insight
The sense of olfaction reached its zenith in development much earlier than other special senses. Olfaction is much more acute than the other senses, exhibits both high sensitivity for odours and high discrimination between them. This plays a very important role even in the social and behavioral aspects of human beings. Recent studies using molecular genetics, electrophysiology and behavioral an...
متن کاملA new method for wide frequency range dynamic olfactory stimulation and characterization.
Sensory receptors often receive strongly dynamic, or time varying, inputs in their natural environments. Characterizing their dynamic properties requires control and measurement of the stimulus over a frequency range that equals or exceeds the receptor response. Techniques for dynamic stimulation of olfactory receptors have lagged behind other major sensory modalities because of difficulties in...
متن کاملEnhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles.
Zinc metal nanoparticles in picomolar concentrations strongly enhance odorant responses of olfactory sensory neurons. One- to 2-nm metallic particles contain 40-300 zinc metal atoms, which are not in an ionic state. We exposed rat olfactory epithelium to metal nanoparticles and measured odorant responses by electroolfactogram and whole-cell patch clamp. A small amount of zinc nanoparticles adde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 50 شماره
صفحات -
تاریخ انتشار 2014